

Genetic factors associated with sarcopenia and frailty in the Lithuanian elderly

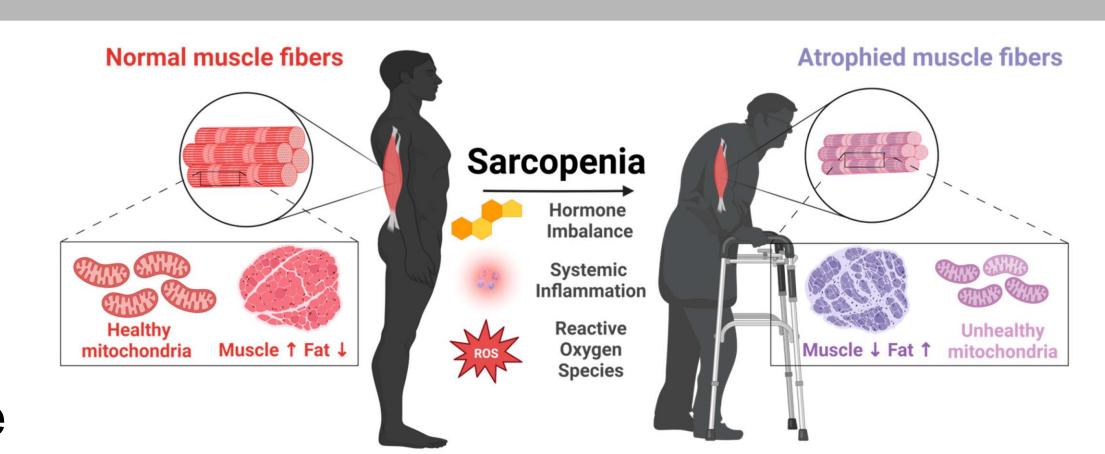
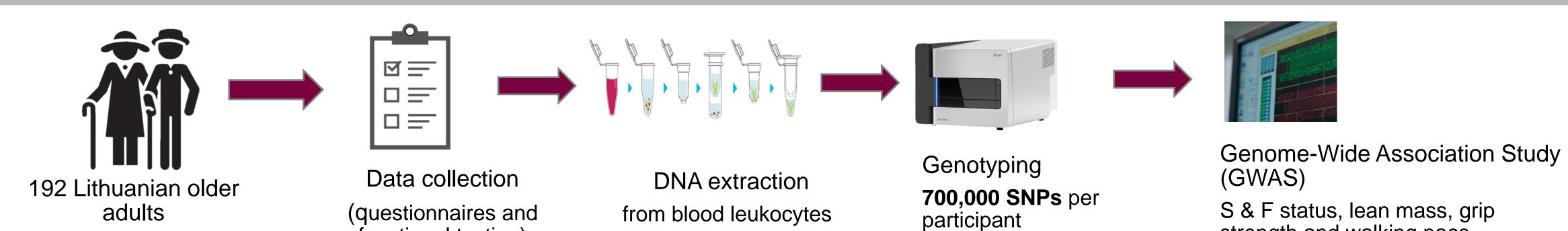
Valentina Ginevičienė¹, Kristijona Gutauskaitė¹, Alina Urnikytė¹, Erinija Pranckevičienė^{1,2}, Rūta Dadelienė¹, Justina Kilaitė¹, Ieva Eglė Jamontaitė¹, Asta Mastavičiūtė¹, Ildus I.Ahmetov^{1,3},Vidmantas Alekna¹

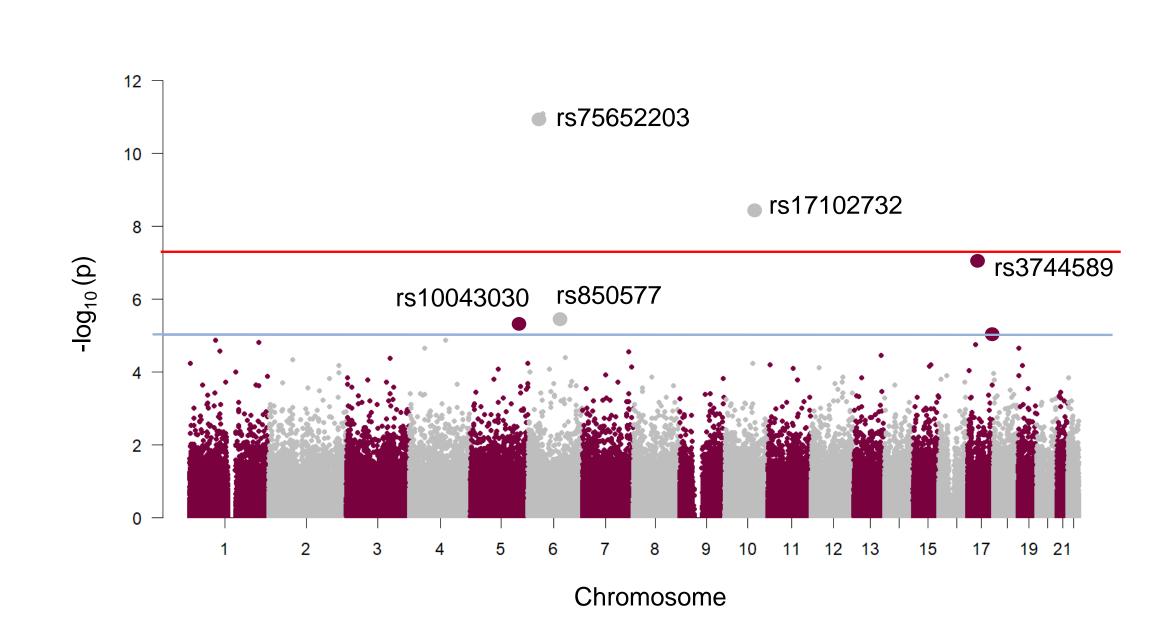
¹ Faculty of Medicine, Vilnius University, Vilnius, Lithuania ²Faculty of Informatics, Vytautas Magnus University, Kaunas, Lithuania ³Liverpool John Moores University, Liverpool, United Kingdom

Introduction

Sarcopenia and frailty are closely linked geriatric syndromes, characterized by a decline in physical capacity and skeletal muscle mass [1]. Growing evidence suggests that both genetic and environmental factors play a crucial role in their development [2]. Despite increasing research in this area, the specific genetic determinants contributing to these conditions remain unclear. This study aimed to evaluate and identify genetic variants associated with sarcopenia and frailty in the Lithuanian elderly through a large-scale whole genome association analysis.

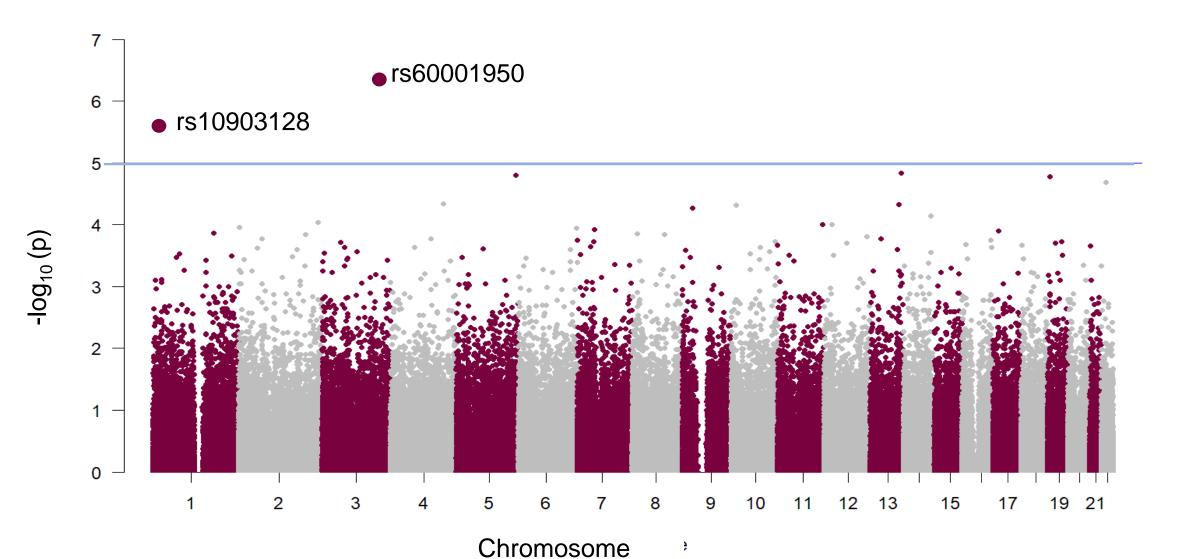
functional testing)


Figure 1. Aging-related changes in skeletal muscle structure and function [3]

strength and walking pace

Methods



Results

(82.2±7.6 years)

Figure 2: Manhattan plot showing SNP association with grip strength. The red line signifies p value threshold of 5×10^{-8} , the blue line – p value 1.0×10^{-5} . Select SNPs rs numbers are indicated in the plot.

CHR	SNP	p value	GC	BONF	Genomic context
Associated with grip strength					
6	rs75652203	8.13E-12	1.39E-11	1.42E-06	ENSR00001362624
10	rs17102732	3.37E-09	5.12E-09	0.000587	intergenic
17	rs3744589	7.97E-08	1.13E-06	0.01388	ACACA
6	rs850577	4.07E-06	5.32E-06	0.7077	RN7SL509P (upstream)
5	rs2850114	5.35E-6	6.96E-06	0.9313	intergenic
7	rs8066532	9.89E-06	1.27E-05	1	ENSR00001599387
Associated with walking pace					
3	rs60001950	4.26E-07	4.75E-07	0.07408	intergenic
1	rs10903128	2.54E-06	2.79E-06	0.4418	ENSR00000250793

Figure 3: Manhattan plot showing SNP association with walking pace. The blue line signifies p value threshold of 1.0×10^{-5} . Select SNPs rs numbers are indicated in the plot.

Table 1: SNPs associated with grip strength and walking pace. GC – p value after genomic correction, BONF – p value after Bonferroni correction

Conclusions

In conclusion, we found significant association of two SNPs (rs75652203, rs17102732) with grip strength in patients with sarcopenia and frailty. Additionally, four SNPs were suggestively associated with grip strength, and two SNPs - with walking pace.

References

[1] Dodds, R., & Sayer, A. A. (2016). Sarcopenia and frailty: new challenges for clinical practice. Clinical medicine (London, England), 16(5), 455–458

[2] Aslam, M. A., Ma, E. B., & Huh, J. Y. (2023). Pathophysiology of sarcopenia: Genetic factors and their interplay with environmental factors.

Metabolism, 149, 155711

[3] Kim, H.-J., Jung, D.-W., & Williams, D. R. (2023). Age Is Just a Number: Progress and Obstacles in the Discovery of New Candidate Drugs for Sarcopenia. Cells, 12(22), 2608.

Acknowledgements

This project has received funding from the Research Council of Lithuania (LMTLT), agreement No S-MIP-22-36.

Contact information

Valentina Ginevičienė, <u>valentina.gineviciene@mf.vu.lt</u> Kristijona Gutauskaitė, <u>kristijona.gutauskaite@mf.stud.vu.lt</u>